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Abstract. We study the branching ratios, the direct CP asymmetries in B→K(∗)K̄(∗) decays and the
polarization fractions of B→K∗K̄∗ decays by employing the QCD factorization in the minimal supersym-
metric standard model with R-parity violation. We derive the new upper bounds on the relevant R-parity

violating couplings from the latest experimental data of B→K(∗)K̄(∗), and some of these constraints are
stronger than the existing bounds. Using the constrained parameter spaces, we predict the R-parity vio-

lating effects on the other quantities in B→K(∗)K̄(∗) decays which have not been measured yet. We find
that the R-parity violating effects on the branching ratios and the direct CP asymmetries could be large;
nevertheless their effects on the longitudinal polarizations of B→K∗K̄∗ decays are small. Near future
experiments can test these predictions and shrink the parameter spaces.

PACS. 12.60.Jv; 12.15.Mm; 12.38.Bx; 13.25.Hw

1 Introduction

The study of exclusive hadronic B-meson decays can pro-
vide not only an interesting avenue to understand the CP -
violation and flavor mixing of the quark sector in the stan-
dard model (SM), but also powerful means to probe differ-
ent new physics (NP) scenarios beyond the SM. Recent ex-
perimental measurements have shown that some B decays
to two light mesons deviated from the SM expectations, for
example, the ππ, πK puzzle [1] and the polarization puzzle
in B→ V V decays [2]. Although these measurements rep-
resent quite a challenge for the theory, the SM is in no way
ruled out yet, since there aremany theoretical uncertainties
in low energy QCD. However, it will be under considerable
strain if the experimental data persist for a long time.
Among those NP models that survived the electroweak

(EW) data, one of the most respectable options is the
R-parity violating (RPV) supersymmetry (SUSY). The
possible appearance of the RPV couplings [3], which will
violate the lepton and baryon number conservation, has
gained full attention in searching for SUSY [4, 5]. The ef-
fect of the RPV SUSY on B decays have been extensively
investigated previously in the literature [6, 7], and it has
been proposed as a possible resolution to the polariza-
tion puzzle and the ππ, πK puzzle [8]. The pure penguin
B→K(∗)K̄(∗) decays are closely related with the puzzles
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which are inconsistent with the SM predictions, and there-
fore are very important for understanding the dynamics of
nonleptonic two-body B decays, which have been studied
in [9]. If the RPV SUSY is the right model to resolve these

puzzles, the same type of NP will affect the B→K(∗)K̄(∗)

decays. In this work, we shall study the RPV SUSY effects

in the B→K(∗)K̄(∗) decays by using the QCD factoriza-
tion (QCDF) approach [10] for hadronic dynamics. The

B→K(∗)K̄(∗) decays are all induced at the quark level by
the b→ dss̄ process, and they involve the same set of RPV
coupling constants. Using the latest experimental data and
the theoretical parameters, we obtain the new upper lim-
its on the relevant RPV couplings. Then we use the con-
strained regions of parameters to examine the RPV effects

on observations in the B→K(∗)K̄(∗) decays which have
not been measured yet.
The paper is arranged as follows. In Sect. 2, we calculate

the CP averaged branching ratios, the direct CP asym-

metries of B→K(∗)K̄(∗) and the polarization fractions in
B→K∗K̄∗ decays, taking account of the RPV effects with
the QCDF approach. In Sect. 3, we tabulate the theoretical
input in our numerical analysis. Section 4 deals with the
numerical results. We display the constrained parameter
spaces which satisfy all the experimental data, and then we
use the constrained parameter spaces to predict the RPV
effects on the other observable quantities, which have not

been measured yet in the B→K(∗)K̄(∗) system. Section 5
contains our summary and conclusion.



816 R. Wang et al.: The rare decays B→K(∗)K̄(∗) and R-parity violating supersymmetry

2 The theoretical frame
for B→K(�)K̄(�) decays

2.1 The decay amplitudes in the SM

In the SM, the low energy effective Hamiltonian for the
∆B = 1 transition at the scale µ is given by [11]

HSMeff =
GF√
2

∑

p=u,c

λp

{
C1Q

p
1+C2Q

p
2

+
10∑

i=3

[
CiQi+C7γQ7γ+C8gQ8g

]}
+h.c. , (1)

where λp = VpbV
∗
pq for the b→ q transition (p ∈ {u, c}, q ∈

{d, s}), and the detailed definition of the operator base can
be found in [11].
Using the weak effective Hamiltonian given by (1), we

can now write the decay amplitudes for the general two-
body hadronic B→M1M2 decays as

ASM(B→M1M2) =
〈
M1M2|H

SM
eff |B

〉

=
GF√
2

∑

p

∑

i

λpCi(µ)

×〈M1M2|Qi(µ)|B〉 . (2)

The essential theoretical difficulty for obtaining the decay
amplitude arises from the evaluation of the hadronic ma-
trix elements 〈M1M2|Qi(µ)|B〉. There are at least three
approaches with different considerations to tackle the said
difficulty: the naive factorization (NF) [12, 13], the per-
turbative QCD [14], and the QCDF [10]. The QCDF de-
veloped by Beneke, Buchalla, Neubert and Sachrajda is
a powerful framework for studying charmlessB decays.We
will employ the QCDF approach in this paper.
The QCDF [10] allows us to compute the nonfac-

torizable corrections to the hadronic matrix elements
〈M1M2|Oi|B〉 in the heavy quark limit. The decay ampli-
tude has the form

ASM(B→M1M2) =
GF√
2

∑

p

∑

i

λp

×
{
api 〈M2|J2|0〉〈M1|J1|B〉+ b

p
i 〈M1M2|J2|0〉〈0|J1|B〉

}
,

(3)

where the effective parameters api including nonfactoriz-
able corrections at order of αs. They are calculated from
the vertex corrections, the hard spectator scattering, and
the QCD penguin contributions, which are shown in Fig. 1.
The parameters bpi are calculated from the weak annihila-
tion contributions as shown in Fig. 2.
Under the naive factorization (NF) approach, the fac-

torized matrix element is given by

AM1M2 ≡ 〈M2|(q̄2γµ(1−γ5)q3)|0〉

×
〈
M1|

(
b̄γµ(1−γ5)q1

)
|B
〉
. (4)

In terms of the decay constant and form factors [15], the
AM1M2 are expressed as

AM1M2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ifM2m
2
BF

B→M1
0 (m2M2) , ifM1 = P,M2 = P ,

fM2m
2
BF

B→M1
0 (m2M2) , ifM1 = P, M2 = V ,

−fM2m
2
BA

B→M1
0 (m2M2) , ifM1 = V, M2 = P ,

−ifM2mM2

[
(ε∗1 · ε

∗
2)(mB+mM1)

×AB→M11 (m2M2)− (ε
∗
1 ·pB)(ε

∗
2 ·pB)

×
2A
B→M1
2 (m2M2

)

mB+mM1

+iεµναβε
∗µ
2 ε

∗ν
1 p

α
Bp
β
1

2VB→M1 (m2M2
)

mB+mM1

]
,

ifM1 = V, M2 = V ,
(5)

whereP (V ) denote a pseudoscalar (vector) meson, pB(mB)
is the four-momentum (mass) of theB-meson,mMi are the
masses of theMi-mesons, and ε

∗
i is the polarization vector

of the vector mesonsMi.
Following Beneke and Neubert [16], coefficients api can

be split into two parts: api = a
p
i,I+a

p
i,II. The first part con-

tains the NF contribution and the sum of nonfactoriz-
able vertex and penguin corrections, while the second one
arises from the hard spectator scattering. The coefficients
read [16]

a1,I = C1+
C2

NC

[
1+
CFαs

4π
VM2

]
,

a1,II =
C2

NC

CFαs

4π
HM1M2 ,

a2,I = C2+
C1

NC

[
1+
CFαs

4π
VM2

]
,

a2,II =
C1

NC

CFαs

4π
HM1M2 ,

a3,I = C3+
C4

NC

[
1+
CFαs

4π
VM2

]
,

a3,II =
C4

NC

CFαs

4π
HM1M2 ,

ap4,I = C4+
C3

NC

[
1+
CFαs

4π
VM2

]
+
CFαs

4π

P pM2,2

NC
,

a4,II =
C3

NC

CFαs

4π
HM1M2 ,

a5,I = C5+
C6

NC

[
1+
CFαs

4π
(−12−VM2)

]
,

a5,II =
C6

NC

CFαs

4π
(−HM1M2) ,

ap6,I =

{
C6+

C5

NC

[
1−6

CFαs

4π

]}
NM2 +

CFαs

4π

P pM2,3

NC
,

a6,II = 0,

a7,I = C7+
C8

NC

[
1+
CFαs

4π
(−12−VM2)

]
,

a7,II =
C8

NC

CFαs

4π
(−HM1M2) ,

ap8,I =

{
C8+

C7

NC

[
1−6

CFαs

4π

]}
NM2 +

αe

9π

P p,EWM2,3

NC
,
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Fig. 1. The next to leading order
nonfactorizable contributions to
the coefficients api

Fig. 2. The weak annihilation con-
tributions to the coefficients bpi

a8,II = 0 ,

a9,I = C9+
C10

NC

[
1+
CFαs

4π
VM2

]
,

a9,II =
C10

NC

CFαs

4π
HM1M2 ,

ap10,I = C10+
C9

NC

[
1+
CFαs

4π
VM2

]
+
αe

9π

P p,EWM2,2

NC
,

a10,II =
C9

NC

CFαs

4π
HM1M2 , (6)

where αs ≡ αs(µ), CF = (N2C − 1)/(2NC), NC = 3 is the
number of colors, and NM2 = 1(0) for M2 is a pseu-
doscalar (vector) meson. The quantities VM2 ,HM1M2 ,
P pM2,2, P

p
M2,3
, P p,EWM2,2

and P p,EWM2,3
consist of convolutions

of hard-scattering kernels with meson distribution am-
plitudes. Specifically, the terms VM2 come from the ver-
tex corrections in Fig. 1a–d, P pM2,2 and P

p
M2,3

(P p,EWM2,2
and

P p,EWM2,3
) arise from QCD (EW) penguin contractions and

the contributions from the dipole operators as depicted
by Fig. 1e and f. HM1M2 is due to the hard spectator scat-
tering as Fig. 1g and h. For the penguin terms, the sub-
script 2 and 3 indicate the twist-2 and -3 distribution
amplitudes of light mesons, respectively. Explicit forms for
these quantities are relegated to Appendix A.
We use the convention that M1 contains an antiquark

from the weak vertex, for the non-singlet annihilation M2
then contains a quark from the weak vertex. The parame-
ters bpi ≡ b

p
i (M1,M2) in(3) correspond to the weak annihi-

lation contributions and are given as [17]

b1(M1,M2) =
CF

N2C
C1A

i
1(M1,M2) ,

b2(M1,M2) =
CF

N2C
C2A

i
1(M1,M2) ,

bp3(M1,M2) =
CF

N2C

[
C3A

i
1(M1,M2)

+C5

(
Ai3(M1,M2)+A

f
3(M1,M2)

)

+NCC6A
f
3 (M1,M2)

]
,

bp4(M1,M2) =
CF

N2C

[
C4A

i
1(M1,M2)+C6A

i
2(M1,M2)

]
,

bp,EW3 (M1,M2) =
CF

N2C

[
C9A

i
1(M1,M2)

+C7

(
Ai3(M1,M2)+A

f
3(M1,M2)

)

+NCC8A
f
3 (M1,M2)

]
,

bp,EW4 (M1,M2) =
CF

N2C

[
C10A

i
1(M1,M2)

+C8A
i
2(M1,M2)

]
, (7)

the annihilation coefficients (b1, b2), (b
p
3, b
p
4) and (b

p,EW
3 ,

bp,EW4 ) correspond to the contributions of the tree, QCD
penguins and EW penguins operators insertions, respec-
tively. The explicit form for the building blocks
Ai,fk (M1,M2) can be found in Appendix A.
With the coefficients in (6) and (7), we can obtain the

decay amplitudes of the SM part ASMf (the subscript “f”
denotes the part without the contribution from the annihi-
lation part) and ASMa (the subscript “a” denotes the anni-
hilation part). The SM part amplitudes of B→K(∗)K̄(∗)

decays are given in Appendix B.

2.2 R-parity violating SUSY effects in the decays

In the most general superpotential of the minimal super-
symmetric standardmodel (MSSM), the RPV superpoten-
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tial is given by [18]

W�Rp = µiL̂iĤu+
1

2
λ[ij]kL̂iL̂jÊ

c
k+λ

′
ijkL̂iQ̂jD̂

c
k

+
1

2
λ′′i[jk]Û

c
i D̂
c
j D̂
c
k , (8)

where L̂ and Q̂ are the SU(2)-doublet lepton and quark
superfields and Êc, Û c and D̂c are the singlet superfields,
while i, j and k are generation indices, and c denotes
a charge conjugate field.
The bilinear RPV superpotential terms µiL̂iĤu can be

rotated away by suitably redefining the lepton and Higgs
superfields [19]. However, the rotation will generate a soft
SUSY breaking bilinear term which would affect our cal-
culation through the penguin level. However, the processes
discussed in this paper could be induced by tree-level RPV
couplings, so that we would neglect sub-leading RPV pen-
guin contributions in this study.
The λ and λ′ couplings in (8) break the lepton number,

while the λ′′ couplings break the baryon number conserva-
tion. There are 27 λ′ijk couplings, 9 λijk and 9 λ

′′
ijk cou-

plings. λ[ij]k are antisymmetric with respect to their first
two indices, and λ′′i[jk] are antisymmetric with j and k. The
antisymmetry of the baryon number violating couplings
λ′′i[jk] in the last two indices implies that there are no λ

′′
ijk

operator generating the b̄→ s̄ss̄ and b̄→ d̄dd̄ transitions.
From (8), we can obtain the following four fermion ef-

fective Hamiltonian due to the sleptons exchange as shown
in Fig. 3:

H
′�Rp
2u−2d =

∑

i

λ′ijmλ
′∗
ikl

2m2ẽLi
η−8/β0(d̄mγ

µPRdl)8(ūkγµPLuj)8 ,

H
′�Rp
4d =

∑

i

λ′ijmλ
′∗
ikl

2m2ν̃Li
η−8/β0(d̄mγ

µPRdl)8(d̄kγµPLdj)8 .

(9)

The four fermion effective Hamiltonian due to the squarks
exchanging as shown in Fig. 4 are

H
′′�Rp
2u−2d =

∑

n

λ′′iknλ
′′∗
jln

2m2
d̃n

η−4/β0
{[
(ūiγ

µPRuj)1(d̄kγµPRdl)1

−(ūiγ
µPRuj)8(d̄kγµPRdl)8

]

−
[
(d̄kγ

µPRuj)1(ūiγµPRdl)1

−(d̄kγ
µPRuj)8(ūiγµPRdl)8

]}
,

Fig. 3. Sleptons exchanging diagrams for nonleptonic B
decays

H
′′�Rp
4d =

∑

n

λ′′nikλ
′′∗
njl

4m2ũn
η−4/β0

[
(d̄iγ

µPRdj)1(d̄kγµPRdl)1

−(d̄iγ
µPRdj)8(d̄kγµPRdl)8

]
. (10)

In (9) and (10), PL =
1−γ5
2 , PR =

1+γ5
2 , η =

αs(mf̃ )

αs(mb)
and

β0 = 11−
2
3nf . The subscript for the currents (jµ)1,8 rep-

resents the current in the color singlet and octet, respec-
tively. The coefficients η−4/β0 and η−8/β0 are due to the
running from the sfermion mass scale mf̃ (100GeV as-
sumed) down to the mb scale. Since it is always assumed
in phenomenology for numerical display that only one
sfermion contributes at one time, we neglect the mixing
between the operators when we use the renormalization
group equation (RGE) to runH

�Rp
eff down to the low scale.

The RPV amplitude for the decays can be written as

A�Rp (B→M1M2) =
〈
M1M2|H

�Rp
eff |B

〉
. (11)

The product RPV couplings can in general be com-
plex and their phases may induce new contribution to CP -
violation, which we write as

ΛijkΛ
∗
lmn = |ΛijkΛlmn| e

iφ�Rp ,

Λ∗ijkΛlmn = |ΛijkΛlmn| e
−iφ�Rp , (12)

here the RPV coupling constantΛ ∈ {λ, λ′, λ′′}, and φ�Rp is
the RPV weak phase, which may be any value between −π
and π.
For simplicity we only consider the vertex corrections

and the hard spectator scattering in the RPV decay am-
plitudes. We ignore the RPV penguin contributions, which
are expected to be small even compared with the SM pen-
guin amplitudes; this follows from the smallness of the
relevant RPV couplings compared with the SM gauge cou-
plings. The bounds on the RPV couplings are insensitive to
the inclusion of the RPV penguins [20]. We also neglected
the annihilation contributions in the RPV amplitudes. The
R-parity violating part of the decay amplitudesA�Rp can be
found in Appendix C.

2.3 The total decay amplitude

With the QCDF, we can get the total decay amplitude:

A(B→M1M2) =A
SM
f (B→M1M2)+A

SM
a (B→M1M2)

+A�Rp (B→M1M2) . (13)

Fig. 4. Squarks exchanging diagrams for nonleptonic B decays
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The expressions for the SM amplitude ASMf,a and the RPV
amplitude A�Rp are presented in Appendices B and C, re-
spectively. From the amplitude in (13), the branching ratio
reads

B(B→M1M2) =
τB|pc|

8πm2B
|A(B→M1M2)|

2
S , (14)

where S = 1/2 ifM1 andM2 are identical, and S = 1 other-
wise; τB is theB lifetime, |pc| is the center of mass momen-
tum in the center of mass frame of the B-meson and given
by

|pc|=
1

2mB

×

√[
m2B− (mM1 +mM2)

2
] [
m2B− (mM1 −mM2)

2
]
.

(15)

The direct CP asymmetry is defined as

AdirCP =
B(B̄→ f̄)−B(B→ f)

B(B̄→ f̄)+B(B→ f)
. (16)

In the B→ V V decay, the longitudinal polarization
fraction is defined by

fL =
ΓL

Γ
=

|A0|2

|A0|2+ |A+|2+ |A−|2
, (17)

where A0(A±) corresponding to the longitudinal(two
transverse) polarization amplitude(s) for B→ V V decay.

3 Input parameters

3.1 Wilson coefficients

We use the next-to-leading Wilson coefficients calculated
in the naive dimensional regularization (NDR) scheme at
mb scale [11]:

C1 = 1.082 , C2 =−0.185 , C3 = 0.014 ,

C4 =−0.035 , C5 = 0.009 , C6 =−0.041 ,

C7/αe =−0.002 , C8/αe = 0.054 , C9/αe =−1.292 ,

C10/αe = 0.263 , C
eff
7γ =−0.299 , C

eff
8g =−0.143 . (18)

3.2 The CKM matrix element

The magnitude of the CKM elements are taken from [21]:

|Vud|= 0.9738±0.0005 , |Vus|= 0.2200±0.0026 ,
|Vub|= 0.00367±0.00047 , |Vcd|=−0.224±0.012 ,
|Vcs|= 0.996±0.013 , |Vcb|= 0.0413±0.0015 ,
|V ∗tbVtd|= 0.0083±0.0016 , |VtbV

∗
ts|=−0.047±0.008 ,

(19)

and the CKMphase γ = 60◦±14◦, sin(2β) = 0.736±0.049.

3.3 Masses and lifetime

There are two types of quark mass in our analysis. One
type is the pole mass which appears in the loop integration.
Here we fix them as

mu =md =ms = 0 , mc = 1.47GeV , mb = 4.8 GeV .
(20)

The other type quark mass appears in the hadronic ma-
trix elements and the chirally enhanced factor rPχ =

2µp
mb

through the equations of motion. They are renormaliza-
tion scale dependent. We shall use the 2004 Particle Data
Group data [21] for discussion:

mu(2 GeV) = 0.0015∼ 0.004GeV ,

md(2 GeV) = 0.004∼ 0.008GeV ,

ms(2 GeV) = 0.08∼ 0.13GeV ,

mb(mb) = 4.1∼ 4.4 GeV , (21)

and then employ the formulae in [11]:

m(µ) =m(µ0)

[
αs(µ)

αs(µ0)

] γ(0)m
2β0

×

[
1+

(
γ
(1)
m

2β0
−
β1γ

(0)
m

2β20

)
αs(µ)−αs(µ0)

4π

]
,

(22)

to obtain the current quark masses to any scale. The defi-
nitions of γ

(0)
m , γ

(1)
m , β0, β1 can be found in [11].

To compute the branching ratio, the masses of the
mesons are also taken from [21]:

mBu = 5.279GeV , mK∗± = 0.892GeV ,
mK± = 0.494GeV , mBd = 5.279GeV ,
mK∗0 = 0.896GeV , mK0 = 0.498GeV .

The lifetime of the B-mesons are [21]

τBu = (1.638±0.011) ps , τBd = (1.532±0.009) ps .

(23)

3.4 The LCDAs of the meson

For the LCDAs of the meson, we use the asymptotic
form [22–24]

ΦP (x) = 6x(1−x) , Φ
P
p (x) = 1 , (24)

for the pseudoscalar meson, and

ΦV‖ (x) = Φ
V
⊥(x) = g

(a)V
⊥ = 6x(1−x) ,

g
(v)V
⊥ (x) =

3

4
[1+(2x−1)2] , (25)

for the vector meson.
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We adopt the moments of the ΦB1 (ξ) defined in [10, 17]
for our numerical evaluation:

∫ 1

0

dξ
ΦB1 (ξ)

ξ
=
mB

λB
, (26)

with λB = (0.46±0.11)GeV [25]. The quantity λB param-
eterizes our ignorance about the B-meson distribution am-
plitudes and thus brings about considerable theoretical
uncertainty.

3.5 The decay constants and form factors

For the decay constants, we take the latest light-cone QCD
sum rule results (LCSR) [15] in our calculations:

fBu(d) = 0.161GeV , fK = 0.160GeV ,

fK∗ = 0.217GeV , f
⊥
K∗ = 0.156GeV . (27)

For the form factors involving the B→K(∗) transition, we
adopt the values given by [15]

A
Bu(d)→K

∗

0 (0) = 0.374±0.034 ,

A
Bu(d)→K

∗

1 (0) = 0.292±0.028 ,

A
Bu(d)→K

∗

2 (0) = 0.259±0.027 ,

V Bu(d)→K
∗
(0) = 0.411±0.033 , (28)

F
Bu(d)→K

0 (0) = 0.331±0.041 .

4 Numerical results and analysis

First, we will show our estimations in the SM by taking
the center value of the input parameters and compare with
the relevant experimental data. Then we will consider the
RPV effects to constrain the relevant RPV couplings from
the experimental data. Using the constrained parameter
spaces, we will give the RPV SUSY predictions for the
branching ratios, the direct CP asymmetries, and the lon-

Table 1. The SM predictions for B (in unit of 10−6), AdirCP and fL in B→K
(∗)K̄(∗)

decays in the framework of NF and QCDF

B AdirCP fL
Decays

NF QCDF NF QCDF NF QCDF

B+u →K
+K̄0 0.61 0.89 0.00 −0.13

B0d →K
0K̄0 0.57 0.89 0.00 −0.13

B+u →K
∗+K̄0 0.06 0.10 0.00 −0.19

B+u →K
+K̄∗0 0.15 0.18 0.00 −0.08

B0d →K
∗0K̄0 0.05 0.10 0.00 −0.18

B0d →K
0K̄∗0 0.14 0.16 0.00 −0.10

B+u →K
∗+K̄∗0 0.20 0.22 0.00 −0.22 0.91 0.90

B0d →K
∗0K̄∗0 0.19 0.20 0.00 −0.22 0.91 0.90

gitudinal polarizations, which have not been measured yet
in the B→K(∗)K̄(∗) system.
When considering the RPV effects, we will use the in-

put parameters and the experimental data which are varied
randomly within 1σ variance. In the SM, the weak phase γ
is well constrained; however, with the presence of the RPV,
this constraint may be relaxed.We would not take γ within
the SM range, but vary it randomly in the range of 0 to π to
obtain conservative limits on RPV couplings. We assume
that only one sfermion contributes at one time with a mass
of 100GeV. As for the other values of the sfermion masses,
the bounds on the couplings in this paper can be easily ob-

tained by scaling them with a factor f̃2 ≡
(

m
f̃

100 GeV

)2
.

For the B→ K(∗)K̄(∗) modes, several branching ra-
tios and one direct CP asymmetry have been measured
by BABAR, Belle and CLEO [21, 26], and their averaged
values [27] are

B(B+u →K
+K̄0) = (1.2±0.3)×10−6 ,

B(B0d→K
0K̄0) = (0.96+0.25−0.24)×10

−6 ,

B(B+u →K
+K̄∗0)< 5.3×10−6 ( 90% CL ) ,

B(B+u →K
∗+K̄∗0)< 71×10−6 ( 90% CL ) ,

B(B0d→K
∗0K̄∗0)< 22×10−6 ( 90% CL ) ,

AdirCP (B
+
u →K

+K̄0) = 0.15±0.33 . (29)

The numerical results in the SM are presented
in Table 1, which shows the results for the CP averaged
branching ratios (B), the direct CP asymmetries (AdirCP )
and the longitudinal polarization fractions (fL).
From Table 1, we can see that the branching ratios for

them are expected to be quite small, of order 10−7, since
B→K(∗)K̄(∗) are the pure b→ d penguin dominated de-
cays. The subleading diagrams may lead to significantCP -
violations in most B→K(∗)K̄(∗) decays. As B0d →K

±K∓

decays involved only nonfactorizable annihilation contri-
butions, their branching ratios are much smaller than those
of the B→K+K̄0,K0K̄0 decays, and we would not study
the B0d →K

±K∓ modes in this paper. It should be noted
that the amplitude for B̄0d → K

0K̄∗0 is not simply re-
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lated to that for B0d →K
0K̄∗0 since the spectator quark is

part of the K0 in the latter decay, while in the former of
the K̄∗0.

Fig. 5. The allowed parame-
ter spaces for the relevant RPV
couplings constrained by B →

K(∗)K̄(∗), and φRPV denotes
the RPV weak phase

Table 2. Bounds for the relevant RPV couplings by B → K(∗)K̄(∗) decays for
100 GeV sfermions, and previous bounds are listed for comparison

Couplings Bounds [process] Previous bounds [process]

|λ′′i23λ
′′∗
i12| ≤ 2.9×10−3

[
B→K(∗)K̄(∗)

]
≤5×10−3[B→KK̄]
≤6×10−5[B0→φπ0,φφ]

[4]

|λ′i13λ
′∗
i22| ≤ 2.2×10−3

[
B→K(∗)K̄(∗)

]
≤ 2.9×10−3

[
B→KK̄

]
[7]

|λ′i22λ
′∗
i31| ≤ 1.7×10−3

[
B→K(∗)K̄(∗)

]
≤ 1×10−4

[
KK̄
]
[4]

|λ′i12λ
′∗
i32| ≤ 3.0×10−4

[
B→KK̄(∗), K̄K(∗)

]
≤ 4×10−4

[
B0→ φπ0

]
[4]

|λ′i23λ
′∗
i21| ≤ 3.0×10−4

[
B→KK̄(∗), K̄K(∗)

]
≤ 4×10−4

[
B0→ φπ0

]
[4]

Table 3. The theoretical predictions for B (in unit of 10−6), AdirCP and fL base on the RPV SUSY
model, which are obtained by the allowed regions of the different RPV couplings

λ′′i23λ
′′∗
i12 λ′i13λ

′∗
i22 λ′i22λ

′∗
i31 λ′i12λ

′∗
i32 λ′i23λ

′∗
i21

B
(
B+u →K

∗+K̄0
)

[0.0052, 7.8] [0.013, 5.5] [0.0059, 6.4] [0.056, 1.4] [0.064, 1.3]

B
(
B+u →K

+K̄∗0
)

[0.071, 5.3] [0.056, 5.3] [0.0096, 5.3]

B
(
B0d →K

∗0K̄0
)

[0.0060, 7.5] [0.011, 5.1] [0.0053, 6.1] [0.049, 1.5] [0.054, 1.2]

B
(
B0d →K

0K̄∗0
)

[0.069, 5.0] [0.050, 5.1] [0.0093, 5.0]

B
(
B+u →K

∗+K̄∗0
)

[0.087, 19] [0.041, 23] [0.029, 16]

B
(
B0d →K

∗0K̄∗0
)

[0.080, 17] [0.039, 22] [0.027, 15]

AdirCP
(
B0d →K

0K̄0
)

[−0.75, 0.57] [−0.19, 0.44] [−0.18, 0.47] [−0.18, 0.47] [−0.18, 0.50]

AdirCP
(
B+u →K

∗+K̄0
)
[−0.19, 0.17] [−0.32, 0.17] [−0.42, 0.47] [−0.99, 0.99] [−0.98, 0.76]

AdirCP
(
B+u →K

+K̄∗0
)
[−0.63, 0.63] [−0.38, 0.47] [−0.65, 0.38]

AdirCP
(
B0d →K

∗0K̄0
)

[−0.28, 0.19] [−0.33, 0.17] [−0.28, 0.80] [−0.99, 0.99] [−0.99, 0.73]

AdirCP
(
B0d →K

0K̄∗0
)

[−0.76, 0.62] [−0.38, 0.48] [−0.39, 0.40]

AdirCP
(
B+u →K

∗+K̄∗0
)
[−0.63, 0.30] [−0.26, 0.25] [−0.77, 0.32]

AdirCP
(
B0d →K

∗0K̄∗0
)
[−0.46, 0.38] [−0.26, 0.25] [−0.77, 0.32]

fL
(
B+u →K

∗+K̄∗0
)

[0.72, 0.97] [0.59, 0.95] [0.74, 0.93]

fL
(
B0d →K

∗0K̄∗0
)

[0.72, 0.97] [0.59, 0.95] [0.74, 0.93]

Although recent experimental results in B→K(∗)K̄(∗)

seem to be roughly consistent with the SM predictions,
there are still windows for NP in these processes. We now
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turn to the RPV effects in B→K(∗)K̄(∗) decays. There
are five RPV coupling constants contributing to the eight
B→K(∗)K̄(∗) decay modes. We use B, AdirCP and the ex-
perimental constraints shown in (29) to constrain the rele-
vant RPV parameters. As known, data on low energy pro-
cesses can be used to impose rather strict constraints on
many of these couplings. In Fig. 5, we present the bounds
on the RPV couplings. The random variation of the param-
eters subjected to the constraints as discussed above leads
to the scatter plots displayed in Fig. 5.
From Fig. 5, we find that every RPV weak phase has

two possible bands; one band is for a positive value of the

Fig. 6.The effects of RPV coup-
ling λ′′i23λ

′′∗
i12 in B →K

(∗)K̄(∗)

decays

RPV weak phase, and another for the negative one. We
also find that the magnitudes of the relevant RPV cou-
plings have been upper limited. The upper limits are sum-
marized in Table 2. For comparison, the existing bounds on
these quadric coupling products [4, 7] are also listed. Our
bounds on |λ′i13λ

′∗
i22|, |λ

′
i12λ

′∗
i32| and |λ

′
i23λ

′∗
i21| are stronger

than the existing ones.
Using the constrained parameter spaces shown in Fig. 5,

one can predict the RPV effects on the other quantities
which have not been measured yet in B→K(∗)K̄(∗) de-
cays. With the expressions for B, AdirCP and fL at hand, we
perform a scan on the input parameters and the new con-
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strained RPV coupling spaces. Then the allowed ranges for
B, AdirCP and fL are obtained with five different RPV cou-
plings, which satisfy all present experimental constraints
shown in (29).
We obtain that the RPV effects could alter the pre-

dicted B and AdirCP significantly from their SM values. For
the decay modes, which have not been measured yet, their
branching ratios can be changed one or two order(s) of
magnitude compared with the SM expectations,

9.0×10−9< B(B→K+K̄∗0,K0K̄∗0)< 5.0×10−6 ,

5.0×10−9< B(B→K∗+K̄0,K∗0K̄0)< 8.0×10−6 ,

Fig. 7.The effects of RPV coup-

ling λ′i13λ
′∗
i22 in B →K

(∗)K̄(∗)

decays

3.0×10−8< B(B→K∗+K̄∗0,K∗0K̄∗0)< 2.0×10−5 ,
(30)

especially, the upper limit of B(B→ K∗+K̄∗0) < 2.0×
10−5 which we have obtained is smaller than the experi-
mental upper limit < 7.0×10−5. For AdirCP , the RPV pre-

dictions on two decays B→K∗+K̄∗0,K∗0K̄∗0 are

AdirCP (B→K
∗+K̄∗0)≤ 0.32 ,

AdirCP (B→K
∗0K̄∗0)≤ 0.38 , (31)
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Fig. 8. The effects of RPV

coupling λ′i22λ
′∗
i31 in B →

K(∗)K̄(∗) decays

and there are quite loose constraints on the direct CP
asymmetries of the other five decays B→K0K̄0,K∗+K̄0,
K+K̄∗0,K∗0K̄0,K0K̄∗0. But the RPV effects on the
fL(B → K∗+K̄∗0,K∗0K̄∗0) are found to be very small;
fL(B →K∗+K̄∗0,K∗0K̄∗0) are found to lie between 0.7
and 1, and these intervals are mainly due to the pa-
rameter uncertainties, not the RPV effects. So we might
come to the conclusion that the RPV SUSY predictions
show that the decays B→ K∗+K̄∗0,K∗0K̄∗0 are domi-
nated by the longitudinal polarization, and there are not
abnormal large transverse polarizations in the Bu,d →

K∗K̄∗ decays. The detailed numerical ranges which we
obtained by different RPV couplings are summarized
in Table 3.
In Figs. 6–10, we present correlations between the phys-

ical observable B, AdirCP , fL and the parameter spaces of
different RPV couplings by the three-dimensional scatter
plots. More information is displayed in Figs. 6-10, and we
can see the trends in the changes of the physical observ-
able quantities with the modulus and weak phase φ�Rp of
the RPV couplings. We take the first plot in Fig. 6 as an
example; this plot shows that B(B→ K∗+K̄0) changes
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Fig. 9.The effects of RPV coup-

ling λ′i12λ
′∗
i32 in B →K

(∗)K̄(∗)

decays

Fig. 10. The effects of RPV
coupling λ′i23λ

′∗
i21 in B → K

(∗)

K̄(∗) decays

with RPV coupling λ′′i23λ
′′∗
i12. We also give projections

on three vertical planes; the |λ′′i23λ
′′∗
i12|–φ�Rp plane dis-

plays the allowed regions of λ′′i23λ
′′∗
i12 which satisfy the

experimental data in (29) (the same as the first plot
in Fig. 5). It is shown that B(B→K∗+K̄0) is increasing
with |λ′′i23λ

′′∗
i12| on the B(B→K

∗+K̄0)–|λ′′i23λ
′′∗
i12| plane.

From the B(B → K∗+K̄0)–φ�Rp plane, we can see that
B(B→K∗+K̄0) is increasing with |φ�Rp |. Further refined
measurements of B(B→K∗+K̄0) can further restrict the
constrained space of λ′′i23λ

′′∗
i12, whereas with a narrower

space of λ′′i23λ
′′∗
i12 a more accurate B(B→K

∗+K̄0) can be
predicted.
The following salient features in Figs. 6-10 are a sum-

mary.

– Figure 6 displays the effects of the RPV coupling
λ′′i23λ

′′∗
i12 on B, A

dir
CP and fL in B→K

(∗)K̄(∗). The con-
strained |λ′′i23λ

′′∗
i12|–φ�Rp plane shows the allowed range

of λ′′i23λ
′′∗
i12 as in the first plot of Fig. 5. The six decays

B(B → K∗+K̄0,K+K̄∗0,K∗0K̄0,K0K̄∗0,K∗+K̄∗0,

K∗0K̄∗0) have the similar change with |λ′′i23λ
′′∗
i12| and

|φ�Rp |, and they are increasing with |λ
′′
i23λ

′′∗
i12| and |φ�Rp |.

The |AdirCP (B→K
0K̄0)| are increasing with |φ�Rp |, but

|λ′′i23λ
′′∗
i12| has a small effect on A

dir
CP (B→K

0K̄0). The
two quantities |AdirCP (B → K

+K̄∗0,K0K̄∗0)| tend to
zero with increasing |λ′′i23λ

′′∗
i12| and |φ�Rp |. The other

four, |AdirCP (B→K
∗+K̄0,K∗0K̄0,K∗+K̄∗0,K∗0K̄∗0)|,

tend to zero with increasing |φ�Rp |, and they could have
smaller ranges with |λ′′i23λ

′′∗
i12|. The RPV effects on

the fL(B→K∗+K̄∗0,K∗0K̄∗0) are very small, and the
fL(B →K∗+K̄∗0,K∗0K̄∗0) are found to lie between
0.72 and 0.97.
– The effects of λ′i13λ

′∗
i22 on B, A

dir
CP and fL are exhib-

ited in Fig. 7. The constrained |λ′i13λ
′∗
i22|–φ�Rp plane is

the same as the second plot in Fig. 5. The effects of
λ′i13λ

′∗
i22 on B,A

dir
CP and fL are similar to λ

′′
i23λ

′′∗
i12 shown

in Fig. 6.
– In Fig. 8, we plot B, AdirCP and fL as functions of
λ′i22λ

′∗
i31. The constrained |λ

′
i22λ

′∗
i31|–φ�Rp plane is the
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same as the third plot of Fig. 5. The six branching ratios
are increasing with |λ′i22λ

′∗
i31| and decreasing with |φ�Rp |.

|AdirCP (B→K
0K̄0)| is unaffected by |λ′i22λ

′∗
i31|, but the

other six direct CP asymmetries could have smaller
ranges with |λ′i22λ

′∗
i31|. |A

dir
CP (K

∗+K̄0,K∗0K̄0)| tends to
zero with decreasing |φ�Rp |; however, φ�Rp has a small
effect on AdirCP (B→K

0K̄0,K+K̄∗0,K0K̄∗0,K∗+K̄∗0,
K∗0K̄∗0). The λ′i22λ

′∗
i31 effects on the fL(B→K

∗+K̄∗0,
K∗0K̄∗0) are small.
– The RPV coupling λ′i12λ

′∗
i32 contributes to the decays

B → K+K̄0,K0K̄0,K∗+K̄0,K∗0K̄0, and the effects
are shown in Fig. 9. The constrained |λ′i12λ

′∗
i32|–φ�Rp

plane is the same as the fourth plot in Fig. 5. We can see
that B(B→K∗+K̄0,K∗0K̄0) are rising with |λ′i12λ

′∗
i32|

and unaffected by φ�Rp . A
dir
CP (B → K

0K̄0) is steady
against |λ′i12λ

′∗
i32|, and |A

dir
CP (B → K

∗+K̄0,K∗0K̄0)|
could have smaller ranges with |λ′i12λ

′∗
i32|. A

dir
CP (B→

K0K̄0,K∗+K̄0, K∗0K̄0) are becoming large with in-
creasing of |φ�Rp |.
– λ′i23λ

′∗
i21 also only contributes to the decays B →

K+K̄0,K0K̄0,K∗+K̄0,K∗0K̄0, and its effects are
shown in Fig. 10. The constrained |λ′i23λ

′∗
i21|–φ�Rp plane

is the same as the last plot in Fig. 5. B(B→K∗+K̄0,
K∗0K̄0) are increasing with |λ′i23λ

′∗
i21| and unaffected

by φ�Rp . A
dir
CP (B→K

0K̄0) is steady against |λ′i23λ
′∗
i21|,

and |AdirCP (B →K
∗+K̄0,K∗0K̄0)| could be varied in

small ranges with |λ′i23λ
′∗
i21|. A

dir
CP (B→K

0K̄0) is de-
creasing with |φ�Rp |, but theA

dir
CP (B→K

∗+K̄0,K∗0K̄0)
are increasing with |φ�Rp |.

The predictions of B andAdirCP are quite uncertain in the
RPV SUSY, since we just have a few experimental meas-
urements and many theoretical uncertainties. One must
wait for the error bars to come down and more channels to
be measured.With the operation ofB factory experiments,
large amounts of experimental data on hadronic B-meson
decays are being collected, and measurements of previously
known observables will become more precise. From the
comparison of our predictions in Figs. 6–10 with the near
future experiments, one will obtain more stringent bounds
on the product combinations of the RPV couplings. On the
other hand, the RPV SUSY predictions of other decays will
become more precise by the more stringent bounds on the
RPV couplings.

5 Conclusions

In conclusion, the pure penguin B→K(∗)K̄(∗) decays are
very important for understanding of the dynamics of non-
leptonic two-body B decays and testing the SM. We have
studied the B → K(∗)K̄(∗) decays with the QCDF ap-
proach in the RPV SUSY model. We have obtained fairly
constrained parameter spaces of the RPV couplings from
the present experimental data of B→K(∗)K̄(∗) decays,
and some of these constraints are stronger than the ex-
isting ones. Furthermore, using the constrained parameter
spaces, we have shown the RPV SUSY expectations for
the other quantities in B→K(∗)K̄(∗) decays which have

not been measured yet. We have found that the RPV ef-
fects could significantly alter B and AdirCP from their SM
values, but the fL(B→K∗+K̄∗0,K∗0K̄∗0) are not signifi-
cantly affected by the RPV effects and the decays B→
K∗+K̄∗0,K∗0K̄∗0 are still dominated by the longitudi-
nal polarization. We also have presented correlations be-
tween the physical observables B, AdirCP , fL and the con-
strained parameter spaces of the RPV couplings in Figs. 6–
10, which could be tested in the near future.
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Appendix A: Correction functions for
B→M1M2 decay at αs order

In this appendix, we present the explicit form for the cor-
rection functions appearing in the parameters api and b

p
i . It

is noted that in B→ PV decays, ΦM (u)→ ΦV‖ (u) if M is
a vector meson.

A.1 The correction functions in B→ PP,PV decays

• The one-loop vertex correction function is

VM2 = 12 ln
mb

µ
−18+3

∫ 1

0

du

(
1−2u

1−u
lnu− iπ

)
ΦM2(u) .

(A.1)

• The hard spectator interactions are given by

HM1M2 =
4π2

NC

fBfM1

m2BF
B→M1
0 (m2M2)

∫ 1

0

dξ

ξ
ΦB1 (ξ)

×

∫ 1

0

du

ū
ΦM2(u)

×

∫ 1

0

dv

v̄

[
ΦM1(v)+

2µM1
MB

ΦM1p (v)

]
, (A.2)

ifM2 is a pseudoscalar meson, and

HM1M2 =
4π2

NC

fBfM1

m2BA
B→M1
0 (m2M2)

∫ 1

0

dξ

ξ
ΦB1 (ξ)

×

∫ 1

0

du

ū
ΦM2(u)

∫ 1

0

dv

v̄
ΦM1(v) , (A.3)

ifM2 is a vector meson.
Considering the off-shellness of the gluon in the hard-

scattering kernel, it is natural to associate a scale µh ∼√
ΛQCDmb , rather than µ∼mb. For the logarithmically
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divergent integral, we will parameterize it as in [17]:XH =∫ 1
0 du/u = − ln(ΛQCD/mb) + �He

iφH mb/ΛQCD with
(�H , φH) related to the contributions from hard specta-
tor scattering. In the numerical analysis, we take ΛQCD =
0.5 GeV, (�h, φH) = (0, 0) as our default values. We have
the same as in B→ V V decay.
•The penguin contributions at twist-2 are described by the
functions

P pM2,2 = C1GM2(sp)+C3
[
GM2(0)+GM2(1)

]

+(C4+C6)

×

[
(nf−2)GM2(0)+GM2(sc)+GM2(1)−

2nf
3

]

−Ceff8g

∫ 1

0

du
2ΦM2(u)

1−u
,

P p,EWM2,2
= (C1+NCC2)GM2(sp)− C

eff
7γ

∫ 1

0

du
3ΦM2(u)

1−u
,

(A.4)

where nf = 5 is the number of quark flavors, and su =
0, sc = (mc/mb)

2 are the mass ratios involved in the eval-
uation of the penguin diagrams. The function GM2(s) is
defined as

GM2(s) =
2

3
+
4

3
ln
mb

µ

+4

∫ 1

0

du

∫ 1

0

dx xx̄ ln (s−xx̄ū− iε)ΦM2(u) .

(A.5)

• The twist-3 terms from the penguin diagrams are given
by

P pM2,3 = C1ĜM2(sp)+C3
[
ĜM2(0)+ ĜM2(1)

]

+(C4+C6)

[
(nf−2)ĜM2(0)

+ ĜM2(sc)+ ĜM2(1)−
2nf
3

]
− 2Ceff8g ,

P p,EWM2,3
= (C1+NCC2)ĜM2(sp)− 3C

eff
7γ , (A.6)

with

ĜM2(s) =
2

3
+
4

3
ln
mb

µ

+4

∫ 1

0

du

∫ 1

0

dx xx̄ ln (s−xx̄ū− iε)ΦM2p (u) ,

(A.7)

if M2 is a pseudoscalar meson, and we omit the twist-
3 terms from the penguin diagrams when M2 is a vector
meson.

• The weak annihilation contributions are given by
Ai1(M1,M2)≈A

i
2(M1,M2)

≈ παs

[
18

(
XA−4+

π2

3

)
+2rM1χ r

M2
χ X

2
A

]
,

Ai3(M1,M2)≈ 6παs
(
rM1χ − r

M2
χ

)(
X2A−2XA+

π2

3

)
,

Af3 (M1,M2)≈ 6παs
(
rM1χ + r

M2
χ

) (
2X2A−XA

)
,

Af1 (M1,M2) = 0, Af2 (M1,M2) = 0 , (A.8)

when both final state mesons are pseudoscalar, whereas

Ai1(M1,M2)≈−A
i
2(M1,M2)≈ 18παs

(
XA−4+

π2

3

)
,

Ai3(M1,M2)≈ 6παsr
M1
χ

(
X2A−2XA+

π2

3

)
,

Af3 (M1,M2)≈−6παsr
M1
χ

(
2X2A−XA

)
,

Af1 (M1,M2) = 0, Af2 (M1,M2) = 0 , (A.9)

when M1 is a vector meson and M2 is a pseudoscalar. For
the opposite case of a pseudoscalar M1 and a vector M2,
one exchanges rM1χ ↔ rM2χ in the previous equations and

changes the sign of Af3 .
Here the superscripts i and f refer to gluon emission

from the initial and final state quarks, respectively. The
subscript k of Ai,fk refers to one of the three possible Dirac
structures Γ1⊗Γ2, namely k = 1 for (V −A)⊗ (V −A),
k = 2 for (V −A)⊗ (V +A), and k = 3 for (−2)(S−P )⊗
(S+P ). XA =

∫ 1
0 du/u is a logarithmically divergent inte-

gral, and will be phenomenologically parameterized in the
calculation asXH . As for the hard spectator terms, we will
evaluate the various quantities in (A.8) and (A.9) at the
scale µh =

√
ΛQCDmb.

A.2 B→ V V decays

In the rest frame of the B system, since the B-meson has
spin zero, two vectors have the same helicity; therefore,
three polarization states are possible, one longitudinal (L)
and two transverse, corresponding to helicities λ= 0 and
λ=± (here λ1 = λ2 = λ). We assume theM1- (M2-) meson
to be flying in the minus (plus) z-direction carrying the mo-
mentum p1 (p2), Using the sign convention ε

0123 =−1, we
have

AM1M2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ifM2
2mM1

[(
m2B−m

2
M1
−m2M2

)
(mB+mM1)

×AB→M11

(
m2M2

)
−

4m2Bp
2
c

mB+mM1

×AB→M12

(
m2M2

) ]
≡ h0 ,

ifV2mM2 [(mB+mM1)A
B→M1
1

(
m2M2

)

∓ 2mBpc
mB+mM1

V B→M1
(
m2M2

)
]≡ h± ,

(A.10)

where h0 for λ= 0 and h± for λ=±.
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• V λM2(±1) contain the contributions from the vertex cor-
rections and are given by

V 0M2(a) = 12 ln
mb

µ
−18

+

∫ 1

0

duΦM2‖ (u)

(
3
1−2u

1−u
lnu−3iπ

)
,

(A.11)

V ±M2(a) = 12 ln
mb

µ
−18

+

∫ 1

0

du

(
g
(v)M2
⊥ (u)±

ag
′(a)M2
⊥ (u)

4

)

×

(
3
1−2u

1−u
lnu−3iπ

)
.

• For the hard spectator-scattering contributions, explicit
calculations forHλM1M2(a) yield

H0M1M2(a) =
4π2

NC

ifBfV1fV2
h0

∫ 1

0

dξ
ΦB1 (ξ)

ξ

∫ 1

0

dv
Φ
M1
‖ (v)

v̄

×

∫ 1

0

du
ΦM2‖ (u)

u
,

H±M1M2(a) =−
4π2

NC

2ifBf
⊥
M1
fM2mM2

mBh±
(1∓1)

×

∫ 1

0

dξ
ΦB1 (ξ)

ξ

∫ 1

0

dv
ΦM1⊥ (v)

v̄2

×

∫ 1

0

du

(
g
(v)M2
⊥ (u)−

ag
′(a)M2
⊥ (u)

4

)

+
4π2

NC

2ifBfM1fM2mM1mM2
m2Bh±

∫ 1

0

dξ
ΦB1 (ξ)

ξ

×

∫ 1

0

dvdu

(
g
(v)M1
⊥ (v)±

g
′(a)M1
⊥ (v)

4

)

×

(
g
(v)M2
⊥ (u)±

ag
′(a)M2
⊥ (u)

4

)
u+ v̄

uv̄2
,

(A.12)

with v̄ = 1− v; when the asymptotical forms for the vector
meson LCDAs are adopted, there will be infrared diver-
gences in H±M1M2 . As in [16, 28], we introduce a cutoff of

order ΛQCD/mb and take ΛQCD = 0.5 GeV as our default
value.
• The contributions of the QCD penguin-type diagrams
can be described by the functions

Pλ,pM2,2 = C1G
λ
M2
(sp)+C3

[
GλM2(sq)+G

λ
M2
(sb)

]

+(C4+C6)
b∑

q′=u

[
GλM2(sq′)−

2

3

]

+
3

2
C9

[
eqG

λ
M2
(sq)+ ebG

λ
M2
(sb)

]

+
3

2
(C8+C10)

b∑

q′=u

eq′
[
GλM2(sq′)−

2

3

]
+Ceff8gG

λ
g ,

Pλ,p,EWM2,2
= (C1+NCC2)

[
2

3
+
4

3
ln
mb

µ
−GλM2(sp)

]

+
3

2
Ceff7γG

λ
g , (A.13)

G0M2(s) =
2

3
+
4

3
ln
mb

µ
+4

∫ 1

0

du ΦM2‖ (u)g(u, s) ,

G±M2(s) =
2

3
+
2

3
ln
mb

µ
+2

∫ 1

0

du (g
(v)M2
⊥ (u)

±
g
′(a)M2
⊥ (u)

4
)g(u, s) , (A.14)

with the function g(u, s) defined as

g(u, s) =

∫ 1

0

dx xx̄ ln (s−xx̄ū− iε) . (A.15)

We omit the twist-3 terms from the penguin diagrams for
B→ V V decays.
•We have also taken into account the contributions of the
dipole operator O8g, which are described by the functions

G0g =−

∫ 1

0

du
2ΦM2‖ (u)

1−u
,

G±g =

∫ 1

0

du

ū

[
− ūg(v)M2⊥ (u)∓

ūg
′(a)M2
⊥ (u)

4

+

∫ u

0

dv
(
ΦM2‖ (v)−g

(v)M2
⊥ (v)

)
+
g
(a)M2
⊥ (u)

4

]
,

(A.16)

here we consider the higher-twist effects kµ = uEnµ−+k
µ
⊥+

k2⊥
4uEn

µ
+ in the projector of the vector meson. The G

±
g = 0

in (A.16) [28, 30], if considering the Wandzura–Wilczek-
type relations [29].
We have not onsidered the annihilation contributions in

B→ V V decays.

A.3 The contributions of new operators in RPV SUSY

Compared with the operators in the HSMeff , there are new

operators (q̄2q3)V±A(b̄q1)V+A in theH
�Rp
eff .• For B→ PP, PV decays, since

〈P | q̄1γµ(1−γ5)q2| 0〉=−〈P | q̄1γµ(1+γ5)q2| 0〉

=−〈P | q̄1γµγ5q2| 0〉 ,

〈P | q̄γµ(1−γ5)b | B〉= 〈P | q̄γµ(1+γ5)b | B〉

= 〈P | q̄γµb | B〉 ,

〈V | q̄1γµ(1−γ5)q2| 0〉= 〈V | q̄1γµ(1+γ5)q2| 0〉

= 〈V | q̄1γµq2| 0〉 ,

〈V | q̄γµ(1−γ5)b | B〉=−〈V | q̄γµ(1+γ5)b | B〉

=−〈V | q̄γµγ5b | B〉 ,
(A.17)

the RPV contribution to the decay amplitude will modify
the SM amplitude by an overall relation.
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• For B→ V V , we will use the prime on the quantities
standing for the (q̄2q3)V±A(b̄q1)V+A current contribution.
In the NF approach, the factorizable amplitude can be ex-
pressed as

A′M1M2 = 〈M2|(q̄2γµ(1−aγ5)q3)|0〉

× 〈M1|(b̄γ
µ(1+γ5)q1)|B〉 . (A.18)

Taking theM1- (M2-) meson flying in the minus (plus)
z-direction and using the sign convention ε0123 = −1, we
have

A′M1M2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ifM2
2mM1

[(
m2B−m

2
M1
−m2M2

)
(mB+mM1)

×AB→M11

(
m2M2

)
−

2m2Bp
2
c

mB+mM1

×AB→M12

(
m2M2

) ]
≡ h′0 ,

−ifM2mM2

[
(mB+mM1)A

B→M1
1

(
m2M2

)

± 2mBpc
mB+mM1

V B→M1
(
m2M2

)]
≡ h′± .

(A.19)

The vertex corrections V
′λ
M2
(a) and the hard spectator-

scattering correctionsH
′λ
M1M2

(a) as follows:

V
′0
M2
(a) =−12 ln

mb

µ
+18−6(1+a)

−

∫ 1

0

duΦM2‖ (u)

(
3
1−2u

1−u
lnu−3iπ

)
,

V
′±
M2
(a) =−12 ln

mb

µ
+18−6(1+a)

−

∫ 1

0

du

(
g
(v)M2
⊥ (u)±

ag
′(a)M2
⊥ (u)

4

)

×

(
3
1−2u

1−u
lnu−3iπ

)
,

H
′0
M1M2

(a) =
4π2

NC

ifBfM1fM2
h
′

0

∫ 1

0

dξ
ΦB1 (ξ)

ξ

×

∫ 1

0

dv
ΦM1‖ (v)

v̄

∫ 1

0

du
ΦM2‖ (u)

u
,

H
′±
M1M2

(a) =−
4π2

NC

2ifBf
⊥
M1
fM2mM2

mBh
′
±

(1±1)

∫ 1

0

dξ
ΦB1 (ξ)

ξ

×

∫ 1

0

dv
Φ
M1
⊥ (v)

v̄2

×

∫ 1

0

du

(
g
(v)M2
⊥ (u)+

ag
′(a)M2
⊥ (u)

4

)

+
4π2

NC

2ifBfM1fM2mM1mM2
m2Bh

′
±

∫ 1

0

dξ
ΦB1 (ξ)

ξ

×

∫ 1

0

dvdu

(
g
(v)M1
⊥ (v)∓

g
′(a)M1
⊥ (v)

4

)

×

(
g
(v)M2
⊥ (u)±

a g
′(a)M2
⊥ (u)

4

)
u+ v̄

uv̄2
.

(A.20)

Appendix B: The amplitudes in the SM

We have

ASMf (B
+→K+K̄0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10+ r

K0

χ

(
a6−

1

2
a8

)]}
AK+K̄0 ,

(B.1)

ASMa (B
+→K+K̄0)

= i
GF√
2
fBf

2
K

{
V ∗ubVudb2(K

+, K̄0)

−V ∗tbVtd

[
b3(K

+, K̄0)+ bEW3 (K
+, K̄0)

]}
, (B.2)

ASMf (B
0→K0K̄0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10+ r

K0

χ

(
a6−

1

2
a8

)]}
AK0K̄0 ,

(B.3)

ASMa (B
0→K0K̄0)

= i
GF√
2
fBf

2
K

{
−V ∗tbVtd

[
b3(K̄

0,K0)+ b4(K̄
0,K0)

+ b4(K
0, K̄0)−

1

2
bEW3 (K̄

0,K0)−
1

2
bEW4 (K̄

0,K0)

−
1

2
bEW4 (K

0, K̄0)

]}
, (B.4)

ASMf (B
+→K∗+K̄0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10− r

K0

χ

(
a6−

1

2
a8

)]}

×AK∗+K̄0 , (B.5)

ASMa (B
+→K∗+K̄0)

=
GF√
2
fBfKfK∗

{
V ∗ubVudb2(K

∗+, K̄0)

−V ∗tbVtd

[
b3(K

∗+, K̄0)+ bEW3 (K
∗+, K̄0)

]}
, (B.6)

ASMf (B
+→K+K̄∗0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10

]}
AK+K̄∗0 , (B.7)

ASMa (B
+→K+K̄∗0)

=
GF√
2
fBfKfK∗

{
V ∗ubVudb2(K

+, K̄∗0)

−V ∗tbVtd

[
b3(K

+, K̄∗0)+ bEW3 (K
+, K̄∗0)

]}
, (B.8)

ASMf (B
0→K∗0K̄0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10− r

K0

χ

(
a6−

1

2
a8

)]}

×AK∗0K̄0 , (B.9)
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ASMa (B
0→K∗0K̄0)

=
GF√
2
fBfKfK∗

{
−V ∗tbVtd

[
b3(K

∗0, K̄0)+ b4(K
∗0, K̄0)

+ b4(K̄
0,K∗0)−

1

2
bEW3 (K

∗0, K̄0)−
1

2
bEW4 (K

∗0, K̄0)

−
1

2
bEW4 (K̄

0,K∗0)

]}
, (B.10)

ASMf (B
0→K0K̄∗0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10

]}
AK0K̄∗0 , (B.11)

ASMa (B
0→K0K̄∗0)

=
GF√
2
fBfKfK∗

{
−V ∗tbVtd

[
b3(K

0, K̄∗0)+ b4(K
0, K̄∗0)

+ b4(K̄
∗0,K0)−

1

2
bEW3 (K

0, K̄∗0)−
1

2
bEW4 (K

0, K̄∗0)

−
1

2
bEW4 (K̄

∗0,K0)

]}
, (B.12)

ASMf (B
+→K∗+K̄∗0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10

]}
AK∗+K̄∗0 , (B.13)

ASMf (B
0→K∗0K̄∗0)

=
GF√
2

{
−V ∗tbVtd

[
a4−

1

2
a10

]}
AK∗0K̄∗0 . (B.14)

Here we have not considered the annihilation contributions
in the B→ V V decays.

Appendix C: The amplitudes for RPV

We have

A�Rp(B+→K+K̄0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK+K̄0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li
−
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0LK+K̄0

+

(
λ′i12λ

′∗
i32

8m2ν̃Li
−
λ′i23λ

′∗
i21

8m2ν̃Li

)
η−8/β0rK

0

χ

}
AK+K̄0 , (C.1)

A�Rp(B0→K0K̄0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK0K̄0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li
−
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0LK0K̄0

+

(
λ′i12λ

′∗
i32

8m2ν̃Li
−
λ′i23λ

′∗
i21

8m2ν̃Li

)
η−8/β0rK

0

χ

}
AK0K̄0 , (C.2)

A�Rp(B+→K∗+K̄0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK∗+K̄0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li
+
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0(−LK∗+K̄0)

−

(
λ′i12λ

′∗
i32

8m2ν̃Li
+
λ′i23λ

′∗
i21

8m2ν̃Li

)
η−8/β0rK

0

χ

}
AK∗+K̄0 ,

(C.3)

A�Rp(B+→K+K̄∗0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK+K̄∗0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li
+
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0LK+K̄∗0

}
AK+K̄∗0 ,

(C.4)

A�Rp(B0→K∗0K̄0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK∗0K̄0 +

(
λ′i13λ

′∗
i22

8m2ν̃Li
+
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0(−LK∗0K̄0)

−

(
λ′i12λ

′∗
i32

8m2ν̃Li
+
λ′i23λ

′∗
i21

8m2ν̃Li

)
η−8/β0rK

0

χ

}
AK∗0K̄0 ,

(C.5)

A�Rp(B0→K0K̄∗0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0FK0K̄∗0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li
+
λ′i22λ

′∗
i31

8m2ν̃Li

)
η−8/β0LK0K̄∗0

}
AK0K̄∗0 ,

(C.6)

A�Rp(B+→K∗+K̄∗0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0F ′K∗+K̄∗0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li

)
η−8/β0L′K∗+K̄∗0

}
A′K∗+K̄∗0

+
λ′i22λ

′∗
i31

8m2ν̃Li
LK∗+K̄∗0AK∗+K̄∗0 , (C.7)

A�Rp(B+→K∗0K̄∗0)

=

{
λ′′i23λ

′′∗
i12

16m2ũi
η−4/β0F ′K∗0K̄∗0

+

(
λ′i13λ

′∗
i22

8m2ν̃Li

)
η−8/β0L′K∗0K̄∗0

}
A′K∗0K̄∗0

+
λ′i22λ

′∗
i31

8m2ν̃Li
LK∗0K̄∗0AK∗0K̄∗0 . (C.8)

In A�Rp , F (
′)
M1M2

and L
(′)
M1M2

are defined as

FM1M2 ≡ 1−
1

NC
+
αs

4π

CF

NC

[
VM2 +HM1M2

]
, (C.9)
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LM1M2 ≡
1

NC

{
1−
αs

4π

CF

NC

[
12+VM2+HM1M2

]}
,

(C.10)

for B→ PP, PV decays, and

F ′M1M2 ≡ 1−
1

NC
−
αs

4π

CF

NC

[
V ′λM2(−1)+H

′λ
M1M2

(−1)
]
,

(C.11)

L′M1M2 ≡
1

NC

{
1+
αs

4π

CF

NC

[
−12+V ′λM2(1)+H

′λ
M1M2

(1)
]
}
,

(C.12)

LM1M2 ≡
1

NC

{
1−
αs

4π

CF

NC

[
12+V λM2(−1)

+HλM1M2(−1)
]
}
, (C.13)

for B→ V V decays.
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